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The Complex Potential Approach to Power-Logarithmic Stress 
Singularities for V-Notched Cracks in a Bi-Material 

Sang Bong Cho* and William C. Carpenter** 
(Received March 30, 1998) 

Power-logarithmic stress singularites and the coefficient vectors for V-notched cracks in a bi 

-material are obtained by using complex potentials and the concept of repeated roots for general 

solutions. On several examples, it is shown that the results obtained using the complex potential 

approach are identical to those found by Bogy (1970) using the Mellin transform method, and 

to those found by Dempsey and Sinclair (1979, 1981) using the Airy stress function approach. 
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1. Introduction 

Stress singularities for V-notched cracks in a bi- 

material are of interest for many engineers. Bogy 

(1970, 1971) commenced research on the stress 

singularity problem of a wedge in dissimilar 

materials. His work was followed by others: 

Dunders and Lee (1972), Hein and Erdogan 

(1971), Carpenter and Byers (1987) etc. 

These works focused mainly on the power 
stress singularity. Logarithmic stress singularities 

were briefly discussed in Bogy (1970, 1971). 

Power-logarithmic stress singularities were repor- 

ted by Dempsey and Sinclair (1979, 1981) where 

it was indicated that the logarithmic singularity is 

only a special case of  power-logarithmic singular- 

ities. Dempsey (1995) reported specific cases 

which have power-logarithmic singularities even 

for homogeneous boundary conditions. 

There are several available methods for singu- 

larity analysis, each with as own merits and 

demerits. The Mellin transform method is an 

elegant but complicated method of examining 

stress singularities. Hein and Erdogan (1971) 
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used the Mellin transform method to examine 

power singularities and Bogy (1970, 1971) used 

the Mellin transform method to examine power 

and power-logarithmic stress singularities. The 

straightforward Airy stress function method was 

used by Williams (1952) to examine power stress 

singularities. The straightforward complex poten- 

tial method has been used by England (1971), 

Stern and Soni (1976), and Carpenter and Byers 

(1987) to examine power stress singularities. To 
the authors knowledge, it has not yet been applied 

to analyze power-logarithmic stress singularities. 

In this paper, power-logarithmic singularities for 

V-notched cracks in a bi-material are investigat- 

ed using the complex potential method and the 

concept of repeated roots for the general solution. 

2. Basic Equations and the Power 
Stress Singularity for V-Notched 

Cracks in a B i -Mater ia l  

In the case of  plane isotropic elasticity in the 

absence of body forces as shown in Fig. 1, the 

stresses and displacements can be expressed in 

terms of complex potentials c~j(z) and ~b~(z) as 

follows (Carpenter and Byers, 1987), 

u j ,  + iuso = (2~j)  -le-~~ j (z) 

-- z~-:~(Z) --  ~-j (Z )  J, (1) 
a~,~+ i ~ o =  r + ~-~(~-) - ,~-~' (~ )  

....... ,Yz -~ ~- ' (~ ' ) ,  (2) 
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Fig. 1 V-notched crack in a bi-material. 

a m -  idm=r  + $ ) (51  + 5 r  
+ z z - '  ~ ' ( z ) ,  (3) 

where z = r e  "~ /~ is the shear modulus, us is 
Poisson's ratio, 

{ xs= 3--4v~ (plane strain), 

3-- v• (plane stress) (4) x., ='7q-%;. 

and a bar over a symbol ( - )  denotes the com- 
plex conjugate of the symbol. The subscript j 
refers to material j. 

Assuming the following complex potentials, the 
stresses and displacements for a V-notched crack 
in a bi-material were obtained as (Carpenter and 
Byers, 1987) 

Cs (z) = A s z  ~ + asz z, (5) 
r (z) = Bsz* + bsz z (6) 

where A, As,  as, B~ and bs are assumed to be 
complex. 

Substituting Eqs. (5) and (6) into Eqs. (l),  
(2) and (3), the power stresses and displacements 
are obtained (Carpenter and Byers, 1987) 

us~ + iuso = (2/zs) - '  [ ra{xsAse i~ 

+ r ~{xlase iO(~-- i) _ ~s~e ie (  - 2+ I) 
-- g ,  eiO(- a--')}], (7) 

O r  + ic6~o ~ ra< {A~Ae e~  g sk2 e~~176 
_ ~ae~O~-a-.)+26 ke~O~-a+o~ 

J J ~ 2  J 

+rX-- I{as~eio(Y-I)_~i /~  eiO( ~ t o 

_ B~ye~e(.a '. , )+2A~ffeie(-z+,)} ,  

(8) 

r  icre= ra-qAs2e~~ + (TsA2 e ~~ 
+ EsAe ~~ + r z-t{asffeie{z - ,) 

+ A s a  e '~176 + BsAe'Ol-z-~ 
(9) 

The boundary conditions for Fig. 1 are as fol- 
lows: 

a l o o - i a ~ o = n ~ ( r )  + i h ( r )  at 0 = - 0 1 ,  (10) 
a~e- icr~o=azoe- ia~o  at t?=0, (11) 
Uxr+iUxo=U2r+iU2o at 0=0 ,  (12) 
a. ,oo- - ia2~o=m(r)+i t2(r )  at 0='&. (13) 

Entering Eqs. (7), (8) and (9) into Eqs. (10), 
(11), (12) and (13), the following equation can 
be obtained after some manipulation if only the 
homogeneous equations are considered: 

[B]{A}={0} (14) 

where 

{A}= [A: ~-, B, b-, Az d2 B~ E2] r, (15) 
{0}= [0 0 0 0 0 0 0 0]T (16) 

in which the superscript T stands for the trans- 
pose and 

Is,, 0] 
[B] = [ i l :  ::1'[,~22 ] (17) 

where 

F/~Ze-~(-oo(-a+o /~e-i(-o~)(a-l) /]e-i(-oo(-a-1) g q 
~sn~=/  Ae i(-~ A2e "-~176 0 

0 
/~ei(-o~)(-a-l)]' 

~2 ft. /1 0] 
[s~]= A A ~0 ' 

- A  a - 2  -A  0 J q, 
[Sm]= - - a - - A  2 0 - - A  

[ u , d =  2/,, 2/2, - 2 z ~  1 ], 
x, /l 0 - 2 T 

2/2a 2t1~ 

[U21]= 2/*2 2/2~- 1 , 
'~ o 2 T  

L 2/22 2/~a 

F A 2 e - t e 2 ( - a + l )  /]e-iaz(a--l) ,~e-ea2(-a-1) 
[s2z]=k Ae, t~ AZe i~ 0 

0 
~eieZ(-a-1)]" 
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For nontrivial solutions for Eq. (14), 

I B I = D ( A )  = 0  (18) 

where D(A) denotes the determinant of matrix 
[BJ. The characteristic Eq. (18) for the homoge- 
neous equations can have single and repeated 
roots. 

For the inhomogeneous equations, the particu- 
lar solutions must be found; that is, ,~ for the 
particular solutions must be obtained. 

The general solution then includes the solution 
of the homogeneous equations and the particular 
solution. If the repeated roots exist in the general 
solution, the complex potentials of Eqs. (5) and 
(6) must be reconsidered. 

3. The Power-Logarithmic Singularity 
by the Complex Potential Approach 

for Repeated Roots 

If/l  for the general solution is a repeated root, 
the complex potentials of Eqs. (5) and (6) must 
be reconsidered. Dempsey (1995) has shown that 
power-logarithmic stress singularities occur on 
transition loci separating real and complex zeros 
for the eigenvalue. Thus, power-logarithmic sin- 
gularities occur when A is real. Therefore, it can 
be easily obtained by differentiating Eqs. (5) and 
(6) with respect to A that the additional complex 
potentials have ihe following forms tbr a double 
root: 

(b', (z)  = / f s z q n z ,  (19) 
~s(z) =/3izalnz. (20) 

where 

~,=&,+i&=. 
By differentiating Eqs. (19) and (20) with 

respect to A, the additional complex potentials for 
a triple root can be also obtained as follows: 

@ (z) = ~ , z  a (lnz) z, (21) 
(;s (z) = 13sz ~ 0nz)~. (22) 

Substituting Eqs. (19) and (20) into Eqs. (1), 
(2) and (3) gives the stresses and displacements 
of the power-logarithmic singularity for a double 
root. 

Substituting Eqs. (19) and (20) into Eq. (1) 
gives the following additional displacements for a 
double root: 

y ) ,  ~. 

~j~= --~j[1,1 r [ (A-xj) {A; cos (A- 1) 0 

-.fi,  j2sin (A- I) 0} + ~j,cos (A + 1) 0 
-/?j2sin (A + 1) 03 + 0[ (A--x j )  

{Aslsin (A---1) O - S b z c o s ( A - .  1) 0} 
-../3slsin (A + 1) 0---B~2cos (A + 1) 0] 
+ Aj~cos (A- 1) 0 -  Aj2sin (A-  I) 0], (23) 

r a 
z~,o= - 2-7111n r [  (A - ,~)  {A)#n (A - 1) 0 

-fi~,2cos(A-I) 0}4 ~j,sin(A + I) 
+/);~cos (A-,. 1) 0] + O[(A+xj) 

{A~,cos ( a - l )  0-Aj~sin (A-1) 0} 
..t-Bj,cos (d + i) 0-/3jzsin (A + 1) 0] 
+ A~sin (A - 1) 0 -  ~-{ncos ( d -  1) 0], (24) 

By substituting Eqs. (19) and (20) into Eqs. 
(2) and (3), the additional stresses for a double 
root can be obtained as follows: 

~.,,,. = -- r ~~ [aln r V (A - 3) {A~,,cos (~ - 1) 0 
-Aa.,sin (A-1) 0} + / ~ c o s  (A + 1) 9 
--/~j2sin (d + 1) g] +AO[ (k -3 )  

{-Aj~sin (A-. 1) 0-As~cos (A--I) 0}, 
-/3s~sin (A+ 1) 0- /};2cos(A+ 1) 0~ 
+ (2A- 3) {A,~cos (A- I) 0 
-A;2sin (d -1 )  0}+/~slCOS (A + 1) 0 
-/3~asin (A + 1) g], (25) 

8soo=ra -~[d ln r [ (A+ 1){Aj~cos (2 -1 )  0 
-Aj~sin (A-1) 0}-+/3,,cos (a+  I) 0 
-/3sasin(d I ) 0 ] + A 0 [ ( A + I )  

{-A,,sin (,~-1) 0--A.,~cos (A-1) 0) 
-/~j, sin (A-q" 1) 0-/~j2cos (d + 1) O] 
+ (2A+ 1){AjlCOS (d--1) [4 
-Asasin (A--1) 0} +/3jNos (A +. I) 0 
-/~j2sin (~ + l) 0], (26) 

6j,.o= ra - l [k lnr  [ (d - 1){fi4,sin (k -1 )  0 
.... A~cos (A-l) 0}+ &~sin (A + 1) 0 
-/~;~cos (a + 1) 0] +A0[ (A-1) 

(A)lcos (A -- l) t9 -- Aj=siu (A - 1) O} 
+ B~,sin (A + 1) 0 .---/3~cos (A + I) O] 
+ (2/l - 1) {Aa~sin (A- 1) 0 
.I.Ajacos (d -1 )  O} +/)~,sin (a + 1) O 
- ~j~cos (A + 1) 0] .  (27) 

These results are equal to the results of Sinclair 
(1996). For a triple root, the additional displace- 
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ments and stresses (which are also the same as 
those obtained in Sinclair (1996)) can be also 
obtained by differentiating the displacement Eqs. 
(23), (24) and stresses Eqs. (25), (26) and (27). 

4. C o e f f i c i e n t  V e c t o r s  for  

a R e p e a t e d  R o o t  

4.1 Coefficient vectors for a double root 
Consider the homogeneous boundary condition 

problem. If the characteristic Eq. (18) has a 
double root, the complex potentials of Eq. (19) 
should be added to Eq. (5), and Eq. (20) should 
be added to Eq. (6). The stress and displacement 
fields for these complex potentials have power- 
logarithmic singularity. Entering these stresses 
and displacements into the boundary conditions 
of Eqs. (10), ( l l) ,  (12), (13) and manipulating 
gives the following equation for the homogeneous 
boundary conditions: 

r~-qnrEB]{Tt}+ r~-"EG] {er 
+ r~<[B] (A} ={0} (28) 

where 

{AI=[At  & Bx ff~ A2 & Ba ff,,]r (29) 

matrix [B] is the same of Eq. (17) and 

d[B] (30) EG] = (p 

Therefore, the following equations must be saris- 
fled: 

EB]{A}=0, (31) 
[ G] {A} + [B3 {A)--0. (32) 

Secondly, consider the inhomogeneous bound- 
ary condition problem. If the characteristic Eq. 
(18) has a single root and the particular solution 
has the same root, this case can be treated as a 
double root case. The following equation can be 
obtained: 

r~-qnr EB] {A} + r ~-t [G] {A} 
+ ra-'EB] {A} ={f}. (33) 

where 

{/}= [n~(r) - ih(r) nt (r) + ih(r) 
0 0 0 0 n2(r ) - i t2 (r )  m(r )+i ta (r ) ]E  

(34) 

4.2 Coefficient Vectors fur a Triple Root 
Consider the homogeneous boundary condition 

problem. If the characteristic Eq. (18) has a triple 
root, the complex potentials of Eqs. (19) and 
(21) should be added to Eq. (5), and Eqs. (20) 
and (22) should be added to Eq. (6). Entering 
the stresses and displacements for these complex 
potentials into the boundary conditions of Eqs. 
(10), (11), (12), (13) and manipulating gives the 
following equation for the homogeneous bound- 
ary conditions: 

ra<(lnr)2[B]{~}+ra-qnr[G][~} 
+ ra-qnr  [B] {A} + r a-~ [H] {A} 
+ r*-'[ G] {A} + r *-t [B] {A} ={0} (35) 

where 

{A}=EAI d, B, if, As aa B~ b2] r (36) 

and 

[HI =d~dA G] . (37) 

Therefore, the following equations must be satis- 
fied: 

[/3] {~}=0, (38) 
[G] {A} + [B] {A} =0, (39) 
EH]{A} + [G]{A} + [B](A}=0. (40) 

Now, let us consider the inhomogeneous 
boundary condition problem. If the characteristic 
Eq. (18) has a double root and the particular 
solution has the same root, this case can be treat- 
ed as a triple root case. The following equation 
can be obtained: 

r ~-1 (In r)~EB] {fi~} + r ' - qn  r EG] {~} 
+ r ~-~[B] {A} + r A-~[H] {A} 
+ r*-'[G]{A)+ ra'<[B]{A}={f} (41) 

where 

{ f } = [ n t ( r ) - i h ( r )  n~(r) +it~(r) 
0 0 0 0 re(r) -it.~(r) nz(r) + i h ( r ) ]  T. 

(42) 

5. T h e  C o e f f i c i e n t  V e c t o r  for  

t h e  R e a l  R o o t  g 

When the root A is real, the coefficient vectors 
{A}, {A} and {~} of Eqs. (14), (28), (33) and 
(35) become as follows: 
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{A}= [31 _/TI B~ 
{A}=EA, d, 
{d}=  EAt A1 B1 

where 

Then, 
lows: 

where 

Aj=As~ + iAj2, 
3,=3~,+id,~, 
Eqs. (43), (44) 

{A} = [ I ]  {Ar}, 
{~} = [13{~}, 
{d} = [ I ]  {Ar} 

/~1 A2 ./T2 B~ /J2] r, (43) 
/~1 ~S~2 ~4~2 ~2 /~21 r, (44) 

B, A2 Az /32 /3z] r, (45) 

/~S = g j l  _k. /BjN, 

and (45) become as fol- 

(46) 
(47) 
(48) 

{A~}=[An A,2 Bn BI~ A~t A~2 

{d~}= [ d .  A,~ B,, B,~ d~, d ~  

{dr}= E3,, A~2 Bu B,R 32, d~ 

-1 i 
I - i  
o 0 
0 0 

[ I ] -  o 0 

0 0 
o o 
0 0 

0 0 0 0 o o  
o o o o 0 0  
1 i 0 0 o o  
1 - i 0 0 0 0  
0 0 1 i 0 0  
o o l - i 0 0  
0 0 0 0 1 i  
0 0 o o 1 - i  

(49) 

(50) 
G / 9 ~ ]  ~', 

(51) 

(52) 

For an example, substituting Eqs. (46), (47) 
and (48) into Eqs. (38), (39) and (40) gives the 
following equations: 

[~s] {A} = [B,] (d~} =0, (53) 
[G] {A}-+-[B] {A}-- [~;,] {d.}  

+ [B,] {dr} =0, (54) 
[HI {d} I- [ G] (A} + [B] {A} = [H,] {/~} 

+ [GI]{A~}+ [/d,] {A~}--0, (55) 
where 

[BI] = [B] I l l ,  
[(;,] = [G] I f ] ,  
[H~] = [H] EZ]. 

6. Examples and Discussion 

Cases having the power-logarithmic stress sin- 
gularity for homogeneous boundary conditions as 
reported by Dempsey (1995) are considered. 

In Fig. 1, when the conditions are 0 ,=0z= 
160 ~ ul=u.,=0.2, EJEx=2.72525, and plane 
strain and the boundary conditions are traction 
free, the characteristic Eq. (18) has double root 
given by A=/lo=0.56983(because D(Ao)=0 and 

(dD)a=ao=O.). In another case, when 01=180 ~ 

02=90% u,=u2=0.2, E2/EI=9.33084, and plane 
strain and the boundary conditions are traction 
free, the characteristic Eq. (18) also has double 
root given by A=Ao'-0.56435 (because D(Ao)=0 

, dD. and t ~ - )  a=~o=0.). 

The previous two cases are examples having a 
power-logarithmic stress singularity for homoge- 
neous boundary conditions and real roots. There- 
fore, from Eqs. (31) and (32), the following 
equations can be obtained: 

[-/~t ] {zZ~_r} = 0, (56) 

[GI] ( a t }  q- [ B t ]  {Ar} = 0 .  (57) 

Because the two cases are IGrl~-0, the following 
equation can be obtained from Eq. (57): 

{ d r }  = -- [ G,  ] -1 [Be] {A~}. (58) 

Entering Eq. (58) into Eq. (56) gives the follow- 
ing equation: 

[Q,]{Ar}=0 (59) 

where 

[Or]  = - [/3~] [GI] '-~ [ B , ] .  (60) 

For a nontrivial solution for Eq. (59), 

lol l=0.  (61) 

After obtaining {A~} from Eq, (59), {fi~r} can 
be obtained from Eq. (58). Therefore, these cases 
are examples which have a power-logarithmic 
stress singularity for homogeneous boundary con- 
ditions. But if the matrices [BI] and [@] are 
similar matrices, the coefficient vector {At} will 
be zero and power-logarithmic stress singularities 
for homogeneous boundary conditions will not 
occur. 

For inhomogeneous boundary conditions, an 
example having a logarithmic stress singularity as 
examined is Bogy's paper(1970) is considered. If 
the boundary conditions are given by constant 
tractions in Fig. 1 and the other conditions are 01 



24 Sang Bong Cho and William C. Carpenter 

=t?z=90 ~ u1=0.3, u2=0.1, E~=229.38, E2=64. 
73 and plane strain, then, Dunders' parameters 
will be a=0.58821 and ~=0.29411, and the con- 
dition of a ( a - 2 / ~ ) = 0  will be satisfied. There- 
fore, the characteristic Eq. (18) does not have 
roots in the range O<Re(A)  < 1. But, the charac- 
teristic Eq. (18) has a double root at A=Ao=I 

because D(Ao) = 0  and (d.D...~ = 0  " d,l ' a=ao are satisfied. 

If the boundary conditions are given constant 
tractions as follows; 

n~ Ca) + itt Ca) = n~ + ih, (62) 
n.z (a) + itz (a) = n2 + i& (63) 

then/1 of the particular solution is/~'-/to-" 1. This 
problem is a case of  a triple root for the general 
solution and the root A is real. In this case the 
following equations are obtained from Eq. (41): 

[Bi] { d r } ' -  0, (64) 
[ G,; {_~} + [RA {Ar}--O, (65) 
[Hz]  ( 3 r }  q" I :G, ] {A, ]+  [B, ] {A,- } - { f }  (66) 

where 

{ f } = [ n l - i h  n~+it, 0 0 0 0  n z - i &  n2+it2]"' 
(67) 

Because this case corresponds to IG, l~0, the 
following equation can be obtained from Eq. 
(66): 

{ZTIr ] = __ [Oat]  - I  [ 1_/i ] { 3 r }  - -  [G,? -~ [ B , ]  { A ~ }  
4- [ G, ] - ' { f } .  (68) 

Entering Eq. (68) into Eq. (65) gives the follow- 
ing equation: 

( -~]  = [P,] ' [O,] {A,-} - [ i~ ] - '  [B, ]  [ ( ; , ] -*{ /}-  
(69) 

where 

[Pz] - '  [O , ]  -.. [13,] [ G , ] - ' [ H , ] .  (70) 

Entering Eq. (69) into Eq. (64) gives the follow- 
ing equation: 

[R~] (A~} = [is,] {f}. (7 ~) 

where 

[ g , ]  = [Bi1 [Pz] ..l [~)1], (72) 
[Si] = [13,] El~,]- '  EBz] [d;~]- ' .  (73) 

From Eqs. (71), (69) and (68), the coefficient 

vectors {At}, { ~ }  and {At} can be obtained. If  

the matrices [B1] and [RI] are similar matrices, 
the coefficient vectors {fi-r} and {_~,.} will depend 
on the traction vector {f}. By this procedure, the 
results of Eqs. (4. 6) and (4. 7) of Bogy's paper 
(1970) may be obtained. 

7. Conclusion 

Powerqogari thmic stress singularities are 
examined and the coefficient vectors for V-not- 
ched cracks in a bi-material are developed using 
the method of complex potentials and the concept 
of repeated roots for general solutions. Results 
obtained the several examples were identical to 
those found by Bogy (1970) using the Mellin 
transform method and to those found by Dempsey 
and Sinclair (1979, 1981) using the Airy stress 
function approach. 
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